Enhancing Clinical Trial in Digital Era with Al

A Scalable Health White Paper

SCALABLE H E A L T H

TABLE OF CONTENT

EXECUTIVE SUMMARY	;
CLINICAL TRIAL CHALLENGES	ł
REIMAGINING CLINICAL TRIAL PRACTICES OF THE FUTURE	,
CLINICAL TRIALS DRIVEN BY ARTIFICIAL INTELLIGENCE)
HOW ARTIFICIAL INTELLIGENCE MET DRUG DEVELOPMENT: USE CASES	2
RETHINKING A STRATEGY FOR AI1	5
CONCLUSION & REFERENCES	6

EXECUTIVE SUMMARY

The healthcare industry is itself a universe. Few other industries are as diverse, expensive, and complex as medicine. Yet, it has been quite slow to embrace the power of data to increase outcomes and realize the potential of today's digital technologies.

Now is the time to bring changes into the healthcare industry. The good news? Well, we are not talking about the EHRs (Electronic Health Records). Rather, it is a powerful catalyst for changes in the healthcare system-intelligent health- is a reality now!

Smart healthcare services prioritize automation, using machines to handle routine procedures and administrative tasks. This enables clinicians to utilize advanced technologies like deep learning for the early identification of high-risk patients and to receive actionable insights for care. Consequently, clinicians can dedicate more time to personalized patient care, leading to improved diagnostic accuracy and treatment outcomes.

Parallel to these developments is the digital revolution, which is rapidly changing what is

conceivable in health services. Technologies create profoundly unique ways to deal with customary players. Lower costs, intelligent devices, and higher usage of new technologies have all redefined how patients manage their health and interact with care systems. Innovative solutions and digital systems can essentially change how we manage ill health and sickness; how we manage and share health information; and, how we handle the main drivers of persistent issues in healthcare to enhance outcomes and value.

Finally, digital health implies caring for one patient while also caring for millions of patients. It implies moving from sick care to wellbeing protection and from individual health to population health. Digital health supports success in medicinal services' main objectives: improved patient experience, enhanced population health, and low expenses.

Increased AI adoption in clinical trials, driven by its ability to replicate human thought, promises to improve treatment development through enhanced quality, safety, and faster timelines.

This whitepaper analyzes the future of digital health, examining the development and challenges of new technologies. It outlines the necessary steps to leverage data, automation, and analytics for improved healthcare quality and efficiency. Real-world examples illustrate the clinical and financial benefits of digital tool integration.

CLINICAL TRIAL CHALLENGES

While we can anticipate the advantages of AI in enhancing healthcare, the adoption of these innovations is not without considerable potential perils. Clinical settings, healthcare provision, and patient information require the highest level of precision, quality, security, and privacy. For all its promise, the world of healthcare faces innumerable challenges.

Consistent accuracy: Having great accuracy in the process of a clinical trial is a must, but AI is still in its infancy. Although AI systems consist of integrated datasets, in a clinical setting AI might face data and scenarios that have not been integrated properly, thus reducing accuracy and reliability. This puts patients at a higher risk of hospitalization.

Security: The medical data collected by devices is sensitive; it should be protected with the highest security measures. There is a great difference between non-clinical and clinical use of data. Data from non-clinical smart wearables can be put into clinical AI systems, and would be essential to classify clinical level accuracy and reliability within the system.

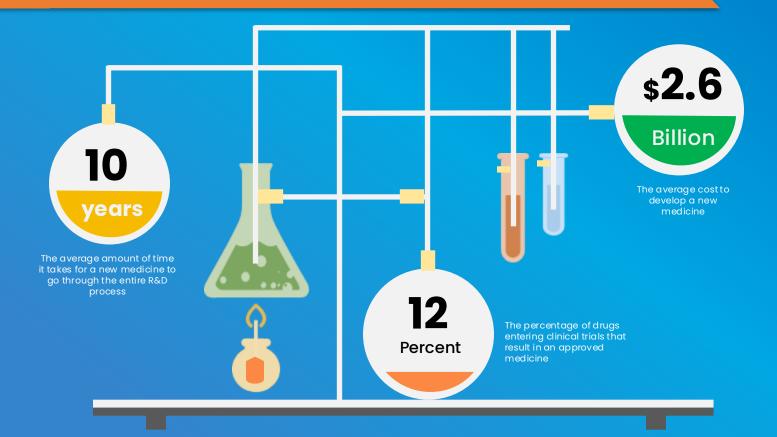
Innovation is defied by digitization and risk-aversion: All the applications of Al in healthcare are structured by a fundamental philosophy: do no harm. This attitude is literally harming people. The ultra-traditionalism of the healthcare system safeguards patients, but also damages them by limiting innovation.

Lack of organized data sets: Due to the absence of organized data sets, researchers in clinical trials face many issues, such as identification concerns, privacy concerns, etc. Advanced analytics requires collecting huge amounts of data from numerous sources. Given the regulatory, practical, privacy, legal, and cultural complexities, convincing traditionally siloed systems to share data from unorganized data sets represents a major hurdle. Integrating and implementing technology: The integration of new technologies has been a burden for many practitioners and clinicians. There is a misconception that the implementation of AI requires a huge amount of data, but that is not the actual issue in healthcare. The actual issue is understanding the situations that call for bringing these technologies together.

Participation of Volunteers: A clinical trial relies heavily on volunteers willing to participate in studies. Therefore, the participation of volunteers is highly important in carrying out trials safely.

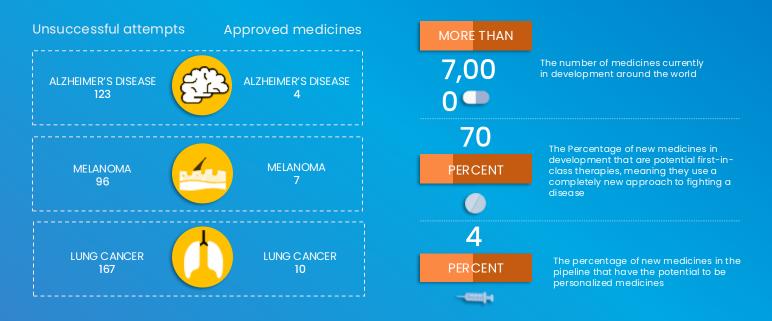
Selection process: The selection process makes it difficult for practitioners to analyze large amounts of medical data quickly. This leads to higher chances of missing eligible patients for a clinical trial.

Precision: Each examination process is tough and requires many individuals. Besides, each patient is different. Every trial must be completed with the utmost precision and transparent.


Cost: The entire clinical trial process takes a huge amount of money, from finding suitable patients to completing new drug manufacturing and recruiting a clinical investigator. The cost to even begin a trial is gigantic.

Subject Compliance: Compliance with untried product usage in a clinical trial is vital to identifying the true efficacy and safety of a product. Classic means of compliance have been pill counting and self-reporting. However, both these means have been repeatedly demonstrated to be unpredictable, regularly miscalculating the degree of compliance.

THE CHALLENGE OF


DEVELOPING NEW TREATMENTS AND CURES

Innovative medicines offer great hope to patients and the healthcare systems, but developing these new treatments and cures is a complex and risky undertaking.

BETWEEN 1998 AND 2014:

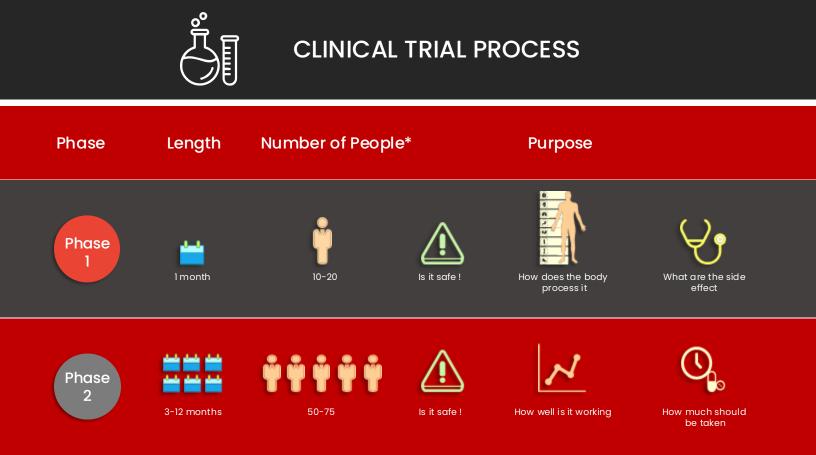
The number of unsuccessful vs successful attempts to develop medicines to treat certain diseases

REIMAGINING CLINICAL TRIAL PRACTICES OF THE FUTURE

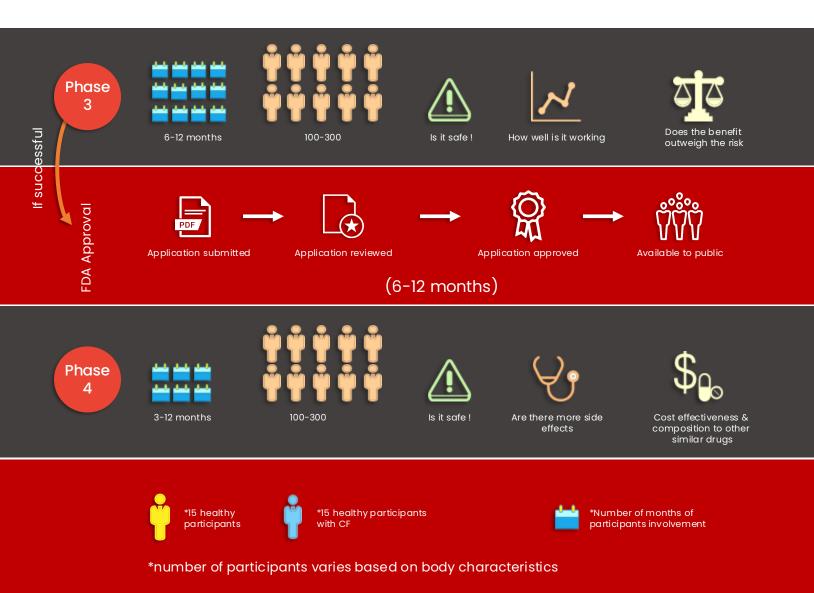
Today, an ideal storm of demographic, financial, technological, and ecological components has created an advanced revolution in the healthcare industry. These incorporate the unmaintainable cost of care; a move to value-based repayment, in which results and effectiveness drive remuneration; the desperate requirement for enhanced access to care; and the development of precision medication.

From a cutting-edge point of view, digital clinical trial procedures can wipe out present dangers and difficulties by utilizing the abilities of digital tools and methods. This involves

Renovating Study Design: Digital clinical trials use a model-based study outline where best-in-class analytics strategies are utilized to create study models and enhance analytics parameters. These depend on real longitudinal patient information, chronicled trial information, and past trial study encounters.


Digitizing Site Selection and Setup: Digital clinical trials utilize advanced analytics for data-driven site selection, considering performance, suitability and risk. This method ranks global sites, incorporates virtual tours and digital engagement, and facilitates digital data exchange and training.

Enhancing Patient Connection: Digital clinical trials offer comprehensive digital connections with patients chosen through the screening of medical records. Patients are educated and enlisted in the trial carefully rather than at trial sites.


Improving Trial Monitoring: Digital clinical trials use advanced analytics and visualization for hazard-based supervision of trials. This incorporates hazard-based monitoring, remote site observing, and mechanized confirmation of data exchanged with sites. Creative ideas include recording patient videos before or after site visits and noting their criticisms and encounters using ePRO and eCOA instruments as monitoring specialists.

Improving Clinical Data Management: Digital clinical trials perform clinical data infusion and incorporate patients' clinical information from different sources: for example, trials utilizing Electronic Data Capture (EDC) frameworks, wearable gadgets, telemedicine support, and electronic therapeutic and wellbeing records. This data is connected and put away in semantic storehouses for auto-aggregation and summarizing.

Filtering Trial Analysis and Reporting: Digital clinical trials use predictive and advanced analytics to produce great insights and evidence on the hazard evaluation of medications, patient subgroup performance, and the hereditary basis of results. It likewise coordinates with genuine information to provide evidence on drug performance and cost adequacy in clinical settings. Analysis yields are put into smart reporting frameworks where report segments are naturally produced and amassed.

www.scalablehealth.com

www.scalablehealth.com

CLINICAL TRIALS DRIVEN BY ARTIFICIAL INTELLIGENCE

The increasing expense of clinical trials and the difficulties associated with procuring, examining, and separating information from medicinal big data makes the development of medical artificial intelligence (MAI) necessary.

Supplementing individuals' insights with machine intelligence creates an exponential effect. Machine learning can help clinicians in their ordinary clinical assignments, such as data control and information extraction, diagnosis devising, deciding remedial decisions to anticipate clinical results, and enhancing the quality and lowering the cost of clinical trials for better patient care.

Patient Recruiting and Data Gathering:

Traditional clinical trials often lack direct patient data. However, the rise of wearable technology now allows billions to easily contribute valuable information. This presents an opportunity for consistent, convenient patient data collection via mobile devices. Patients can choose to share their data directly, resulting in more accurate and reliable insights than those obtained through traditional, manual trials.

Constant Improvement:

Clinical trial processing frameworks are gradually moving to the cloud, with versatile information for transmitting data and custom structures for breaking down that information. This allows for an approach to running persistent and self-learning trials with prominent accuracy.

Mutual Resource Pool with Crowd Sourcing

Patient data can now be shared among different facilities through a cloud framework, making it even more alluring for patients to take an interest in trials around the world.

Guarantee Adherence

The continuous cloud transmission of mobile phone recordings enables clinics to detect medication irregularities instantly and alert patients who forget to take their prescribed drugs.

Calculate Drug Effectiveness

Few people have identical body types; thus, different individuals can respond uniquely to similar pharmaceuticals. Modernized reasoning is a compelling technique for envisioning drug outcomes since it addresses human variation and other collaborating qualities. With AI, it is possible to predict which patients with specific infections would profit the most from a drug.

CLINICAL TRIAL

COGNITIVE ARCHITECTURES

Clinical trial efficacy and adverse

Procedural Semantic Episodic Symbolic Short-Term Memory Perception Action

Symbolic ShortTerm Memories

Next-generation of antibiotics and cancer therapies

Human Like Intelligence

Health predictions & Personalized and precision medicine

Neural Networks

Faster & safer clinical trials for cancer and biologics

www.scalablehealth.com

HOW ARTIFICIAL INTELLIGENCE MET DRUG DEVELOPMENT:

USE CASES

Pharmaceutical companies can leverage AI to streamline drug discovery, a traditionally lengthy and costly process. Preclinical and clinical development can take 7-18 years, costing billions with a low approval rate. To accelerate development and reduce costs, some companies are integrating AI with scientific modeling, though results have been variable.

Traditional drug development is slow, expensive, and time-consuming. Al offers a promising solution, applicable across various stages, including target identification, lead optimization, and patient selection. By rapidly analyzing vast data from diverse sources, Al can efficiently better drug targets, potentially accelerating treatments for chronic and fatal diseases like Alzheimer's.

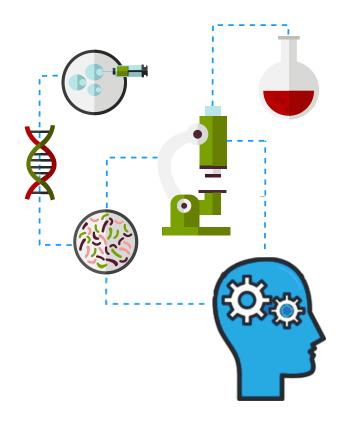
Al Saves Almost Half the Money and Time for Drug Discovery:

BERG Health, a 6-year-old startup incorporated by Carl Berg in Silicon Valley in February 2017, stood out as truly newsworthy when they declared that their Al had chosen a drug candidate for rare cerebrum diseases; that drug has now entered clinical trials as a monotherapy. The Al-based BERG Interrogative Biology Platform guided the drug candidate, named BPM 31510-IV, through early advancement. By examining patient information from a large number of cancer patients, the Al assembled a siloed disease model and recommended conceivable drug treatments. Legitimately required administrative testing requires that all drug candidates finish through animal tests; this prerequisite is not likely to change soon. Yet, the possibility to choose a drug candidate from human information may speed up the drug advancement process and lessen the attrition rate of drug applicants, thus reducing overall costs. BERG's President and Co-Founder, Niven Narain, claims that his Al took a fraction of the time and less money compared to conventional techniques.

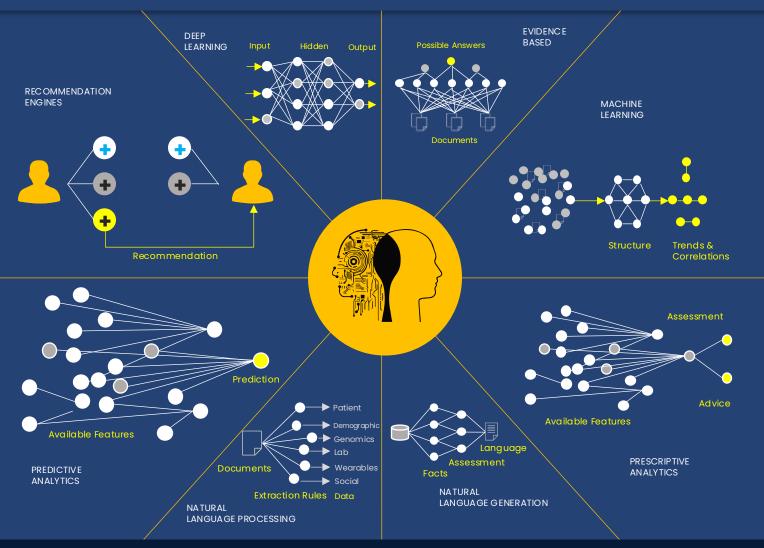
Drug Target Identification and Toxicity Forecast:

Despite rigorous development, FDA-approved drugs are sometimes recalled due to side effects from polypharmacology. Al and big data are being used by companies like Cyclica and One Three Biotech to predict these effects and improve drug target identification.

Cyclica Inc., established in 2010, uses a suite of computational calculations. Their predictive analytics platform, Ligand Express[™], is used and approved through third-party associations, enabling customers to foresee a drug candidate's reactions before clinical trials; this empowers more educated R&D choices. Working in the same field as Cyclica is One Three Biotech. This organization's AI, BANDIT, helped Oncoceutics Inc. foresee the objectives of ONC201, a first-in-class particle that is being assessed in 5 clinical trials. Their outcomes were later affirmed through in-vitro examinations, and the physiological pertinence of the anticipated cooperation was developed by dissecting clinical specimens.


Low-priced Drug Development, Low-priced Healthcare:

Throughout the last five years, AI has made progress in different parts of drug improvement and is being used by new biotech companies and average-sized medication disclosure organizations. However, AI is yet to be incorporated by Big Pharma enterprises. AI has changed different sectors and can do the same in the pharmaceutical business by expanding drug improvement proficiency and lowering drug attrition levels, thus diminishing drug advancement costs and guaranteeing less expensive healthcare services.


Some additional use cases that have advantages and are appropriate for AI applications are:

UPMC cooperated with IBM's Watson to enhance inventory network performance in its healthcare system. UPMC is one of the country's largest incorporated healthcare delivery services and funds frameworks with more than \$12 billion in income. Watson's restorative procurement ability and UPMC's domain mastery, along with an independent organization called Pensiamo, have the mission of enhancing supplychain performance in healthcare systems.

AI has also made progress in the capacity to mine data held inside therapeutic records. Google DeepMind, for instance, is working with Moorfields Eye Hospital in east London and the UK's National Health Service (NHS) by mining medical records to create better and faster health services.

ARTIFICIAL INTELLIGENCE ECOSYSTEM

RETHINKING A STRATEGY FOR AI

Evolving populations necessitate patient-centered healthcare models. By understanding patients' needs, technology can enable the development of valuable services. Digital access empowers healthcare professionals across all sectors, fostering a collaborative ecosystem. The future of healthcare relies on innovative rethinking.

Rethink Business Models

Presently proactive and adaptable, healthcare business models can react quickly to changing patient needs or statistical shifts. Digitized plans of action can:

Integrate: Merge well-being, anticipation, observing, etc. for patientcentered health services beyond intense care.

Study: Measure an organization's qualities while eliminating activities with less value

Contribute: Share clinical research for greater insights to offer customized treatments

Build: React to rising sectors like corporate wellbeing and therapeutic tourism

Broker: Balance supply and demand and coordinate and accommodate patients' requirements for services

Rethink Business Processes

Straight and one-dimensional medical processes can extend care under new models, bringing patients and experts closer together. Present-day procedures can:

- Optimize counteractive action systems, engaging healthcare consumers
- Develop clinical decisions and diagnostics with access to keen
 information
- Boost observation and response with digital and intelligent advances, encouraging early discovery and expectation
- Engage patients and cultivate joint efforts between all caregivers for all-inclusive care
- Provide real-time care and correspondence to dispense with transmission blunders, create constant transparency, and enhance value-added care
- Restructure resource planning to improve productivity inside and across organizations

Rethink Work

New models and procedures can develop a community where all benefit, changing how experts work and develop. For instance:

- Physicians can now organize more educated and empowered patients, surpassing the conventional hierarchy and "spot counselling" state of mind
- Nurses, as personal caregivers, accept more obligations for more significant effect in care procedure
- Clinical choices are less demanding with better access to data at any place and at any time
- A new setting for clinical specialists empowers translational research and encourages creativity.

CONCLUSION

The collective disruption from AI and IoT will reshape our lives in a sensational way unimagined by most healthcare organizations today. However, AI is still in its infancy and can't yet supplant a doctor.

Al can comprehend natural language and clinical notes alongside structured information like numbers and dates. It also can build theories because of evidence. Due to these abilities, Al is being considered for Al-Powered Clinical Trials, of which the healthcare and pharmaceutical industries would be the greatest beneficiaries.

Artificial intelligence holds prominent potential to change clinical research and lower costs related to disease management, successful aging, and the discovery and improvement of new medicines. At has a promising future. Pharmaceutical companies need to assess their needs to create a pathway to adopting advanced clinical trials. Certain activities can be embraced horizontally over various medical areas, while others might be particular to specific areas.

It is necessary and important to conceive of the future with optimistic yet practical targets and venture into digital clinical trials. Prompt action by drug development organizations can result in competitive differentiation in creation of drugs through clinical trials.

REFERENCES

I. https://www.forbes.com/sites/reenitadas/2016/03/30/top-5technologies-disrupting-healthcare-by-2020/#3291dd766826

2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 3058157/

3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503556/

4. http://www.sciencedirect.com/science/article/pii/S1046202312001387

5. http://www.bbc.co.uk/news/business-40708043

6. https://www.forbes.com/sites/oracle/2017/02/22/artificialintelligence-shows-promise-as-clinical-development-tool/

7. http://www.openclinical.org/aiinmedicine.html

8. https://groups.csail.mit.edu/medg/ftp/psz/AIM82/ch1.html

9. https://prescouter.com/2017/05/artificial-intelligence-drug-development/

About Scalable Health

Scalable Health is healthcare division of Scalable Systems focused on providing innovative products and solutions in healthcare and life sciences market.

www.scalablehealth.com

About Scalable Systems

Scalable Systems is a Data, Analytics & Digital Transformation Company focused on vertical specific innovative solutions. By providing next generation technology solutions and services, we help organizations to identify risks & opportunities, achieve sales and operational excellence to gain an innovative edge.

www.scalable_systems.com

Scalable Health

Email: info@scalablehealth.com Web: www.scalablehealth.com

Copyright © 2025 Scalable Health. All Rights Reserved

While every atempt has been made to ensure that the information in this document is accurate and complete, some typographical errors or technical inaccuracies may exist. Scalable Health does not accept responsibility for any kind of loss resulting from the use of information contained in this document. The information contained in this document is subject to change without notice. Scalable Health logs, and trademarks are registered trademarks of Scalable Health or its subject to change without notice. Scalable Health logs, and trademarks are registered trademarks of Scalable Health or its subject to change without notice. Scalable Health logs, and trademarks are registered trademarks of Scalable Health or its subject to change without notice. Information contained by for educational purposes. Scalable Health is not responsible to the performance or support of third party products and does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices or products.